An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes

author

  • Najmeh Neshat Industrial Engineering, Group of Industrial Engineering, Ayatollah Haeri University of Meybod, Meybod, Iran
Abstract:

In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecasting purposes.      

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a novel approach of artificial neural networks modeling based on fuzzy regression approach for forecasting purposes: the case of liquid gas price in japan’s market

in this paper, a new approach of modeling for artificial neural networks (ann) models based on the concepts of ann and fuzzy regression is proposed. for this purpose, we reformulated ann model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ann models. hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility. in ...

full text

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

full text

an extended fuzzy artificial neural networks model for time series forecasting

improving time series forecastingaccuracy is an important yet often difficult task.both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. in this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

full text

Fuzzy nonlinear regression using artificial neural networks

Fuzzy linear regression analysis with symmetric triangular fuzzy number coefficient has been introduced by Tanaka et al. In this work we propose to approximate the fuzzy nonlinear regression using Artificial Neural Networks. The working of the proposed method is illustrated by the case study with the data for temperature and evaporation for the IARI New Delhi division. MSC: 62J86

full text

gold price forecasting using hybrid artificial neural networks with fuzzy regression model

artificial neural networks (anns) are flexible computing frameworks and universal approximators that can be applied to a wide range of time series forecasting problems with a high degree of accuracy. however, despite of all advantages cited for artificial neural networks, they have data limitation and need to the large amount of historical data in order to yield accurate results. therefore, the...

full text

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 28  issue 11

pages  1651- 1655

publication date 2015-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023